3.58 \(\int \frac{(a+b \cot (c+d x))^2}{\sqrt{e \cot (c+d x)}} \, dx\)

Optimal. Leaf size=267 \[ \frac{\left (a^2-2 a b-b^2\right ) \log \left (\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \sqrt{e}}-\frac{\left (a^2-2 a b-b^2\right ) \log \left (\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \sqrt{e}}+\frac{\left (a^2+2 a b-b^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \sqrt{e}}-\frac{\left (a^2+2 a b-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} d \sqrt{e}}-\frac{2 b^2 \sqrt{e \cot (c+d x)}}{d e} \]

[Out]

((a^2 + 2*a*b - b^2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*Sqrt[e]) - ((a^2 + 2*a*b -
 b^2)*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*Sqrt[e]) - (2*b^2*Sqrt[e*Cot[c + d*x]])/(
d*e) + ((a^2 - 2*a*b - b^2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d*S
qrt[e]) - ((a^2 - 2*a*b - b^2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*
d*Sqrt[e])

________________________________________________________________________________________

Rubi [A]  time = 0.249393, antiderivative size = 267, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {3543, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{\left (a^2-2 a b-b^2\right ) \log \left (\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \sqrt{e}}-\frac{\left (a^2-2 a b-b^2\right ) \log \left (\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} d \sqrt{e}}+\frac{\left (a^2+2 a b-b^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \sqrt{e}}-\frac{\left (a^2+2 a b-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} d \sqrt{e}}-\frac{2 b^2 \sqrt{e \cot (c+d x)}}{d e} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cot[c + d*x])^2/Sqrt[e*Cot[c + d*x]],x]

[Out]

((a^2 + 2*a*b - b^2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*Sqrt[e]) - ((a^2 + 2*a*b -
 b^2)*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*Sqrt[e]) - (2*b^2*Sqrt[e*Cot[c + d*x]])/(
d*e) + ((a^2 - 2*a*b - b^2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d*S
qrt[e]) - ((a^2 - 2*a*b - b^2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*
d*Sqrt[e])

Rule 3543

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(d^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
 + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1] &&  !(EqQ[m, 2] && EqQ
[a, 0])

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(a+b \cot (c+d x))^2}{\sqrt{e \cot (c+d x)}} \, dx &=-\frac{2 b^2 \sqrt{e \cot (c+d x)}}{d e}+\int \frac{a^2-b^2+2 a b \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx\\ &=-\frac{2 b^2 \sqrt{e \cot (c+d x)}}{d e}+\frac{2 \operatorname{Subst}\left (\int \frac{-\left (a^2-b^2\right ) e-2 a b x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{d}\\ &=-\frac{2 b^2 \sqrt{e \cot (c+d x)}}{d e}-\frac{\left (a^2-2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{e-x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{d}-\frac{\left (a^2+2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{e+x^2}{e^2+x^4} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{d}\\ &=-\frac{2 b^2 \sqrt{e \cot (c+d x)}}{d e}-\frac{\left (a^2+2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{e-\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 d}-\frac{\left (a^2+2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{e+\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 d}+\frac{\left (a^2-2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}+2 x}{-e-\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} d \sqrt{e}}+\frac{\left (a^2-2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}-2 x}{-e+\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} d \sqrt{e}}\\ &=-\frac{2 b^2 \sqrt{e \cot (c+d x)}}{d e}+\frac{\left (a^2-2 a b-b^2\right ) \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} d \sqrt{e}}-\frac{\left (a^2-2 a b-b^2\right ) \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} d \sqrt{e}}-\frac{\left (a^2+2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \sqrt{e}}+\frac{\left (a^2+2 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \sqrt{e}}\\ &=\frac{\left (a^2+2 a b-b^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \sqrt{e}}-\frac{\left (a^2+2 a b-b^2\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e \cot (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} d \sqrt{e}}-\frac{2 b^2 \sqrt{e \cot (c+d x)}}{d e}+\frac{\left (a^2-2 a b-b^2\right ) \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)-\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} d \sqrt{e}}-\frac{\left (a^2-2 a b-b^2\right ) \log \left (\sqrt{e}+\sqrt{e} \cot (c+d x)+\sqrt{2} \sqrt{e \cot (c+d x)}\right )}{2 \sqrt{2} d \sqrt{e}}\\ \end{align*}

Mathematica [C]  time = 0.872605, size = 192, normalized size = 0.72 \[ -\frac{\sqrt{\cot (c+d x)} \left (\frac{4}{3} a b \cot ^{\frac{3}{2}}(c+d x) \text{Hypergeometric2F1}\left (\frac{3}{4},1,\frac{7}{4},-\cot ^2(c+d x)\right )-\frac{\left (a^2-b^2\right ) \left (\log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )-\log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )+2 \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )-2 \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )\right )}{2 \sqrt{2}}+2 b^2 \sqrt{\cot (c+d x)}\right )}{d \sqrt{e \cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cot[c + d*x])^2/Sqrt[e*Cot[c + d*x]],x]

[Out]

-((Sqrt[Cot[c + d*x]]*(2*b^2*Sqrt[Cot[c + d*x]] + (4*a*b*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Co
t[c + d*x]^2])/3 - ((a^2 - b^2)*(2*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c +
d*x]]] + Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x
]]))/(2*Sqrt[2])))/(d*Sqrt[e*Cot[c + d*x]]))

________________________________________________________________________________________

Maple [B]  time = 0.028, size = 529, normalized size = 2. \begin{align*} -2\,{\frac{{b}^{2}\sqrt{e\cot \left ( dx+c \right ) }}{de}}-{\frac{\sqrt{2}{a}^{2}}{2\,de}\sqrt [4]{{e}^{2}}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }+{\frac{\sqrt{2}{b}^{2}}{2\,de}\sqrt [4]{{e}^{2}}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }+{\frac{\sqrt{2}{a}^{2}}{2\,de}\sqrt [4]{{e}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }-{\frac{\sqrt{2}{b}^{2}}{2\,de}\sqrt [4]{{e}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }-{\frac{\sqrt{2}{a}^{2}}{4\,de}\sqrt [4]{{e}^{2}}\ln \left ({ \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ) }+{\frac{\sqrt{2}{b}^{2}}{4\,de}\sqrt [4]{{e}^{2}}\ln \left ({ \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ) }-{\frac{ab\sqrt{2}}{2\,d}\ln \left ({ \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}-{\frac{ab\sqrt{2}}{d}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+{\frac{ab\sqrt{2}}{d}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cot(d*x+c))^2/(e*cot(d*x+c))^(1/2),x)

[Out]

-2*b^2*(e*cot(d*x+c))^(1/2)/d/e-1/2/e/d*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)
*a^2+1/2/e/d*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*b^2+1/2/e/d*(e^2)^(1/4)*2^
(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*a^2-1/2/e/d*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2
)^(1/4)*(e*cot(d*x+c))^(1/2)+1)*b^2-1/4/e/d*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1
/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))*a^2+1/4/e/d*(e^2
)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/
4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))*b^2-1/2/d*a*b/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(
e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-
1/d*a*b/(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/d*a*b/(e^2)^(1/4)*2^(1/2)*arc
tan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c))^2/(e*cot(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c))^2/(e*cot(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \cot{\left (c + d x \right )}\right )^{2}}{\sqrt{e \cot{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c))**2/(e*cot(d*x+c))**(1/2),x)

[Out]

Integral((a + b*cot(c + d*x))**2/sqrt(e*cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \cot \left (d x + c\right ) + a\right )}^{2}}{\sqrt{e \cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cot(d*x+c))^2/(e*cot(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((b*cot(d*x + c) + a)^2/sqrt(e*cot(d*x + c)), x)